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The algorithms of numerical solution of the system of quasihydrodynamic equations, 
simulating a dense electron-hole plasma in binary heterostructures, are considered 
and treated. 

The nonequilibrium due to injection of hot electrons and holes can be substantial in 
semiconducting injection lasers, light diodes, bipolar transistors, and other devices based 
on heterostructures of an electron-hole plasma (EHP). In EHP with high charge carrier con- 
centrations, such as EHP of semiconducting lasers, the pair collision frequencies are rela- 
tively high, so that Fermi or Maxwell electron and hole energy distributions are established. 
The effective electron and hole temperature, however, can substantially differ in this case 
from the lattice temperature. This deviation is most substantial when energy transfer from 
the EHP lattice is slowed shown, such as at low temperatures, for example [i, 2]. In a num- 
ber of cases the "separation" of effective carrier temperatures from the lattice temperature 
in EHPs of lasers and light diodes can also occur at sufficiently high values of the lattice 
temperature, such as room temperature [3]. EHP heating in heterostructures can substantially 
affect the characteristics of semiconducting devices. For sufficiently strong EHP heating 
its stratification is possible [4], leading, in particular, to inhomogeneities of EHP optical 
properties. 

The theoretical study of heating effects in an EHP is the subject of ~any studies, such 
as [4, 8], in which was analyzed the stability of a uniform state of a "hot" EHP, as well 
as studies of the effect of a heated EHP of the characteristics of devices of the type of 
lasers and light diodes [9, i0]. The complexity of physical processes in an EHP of semicon- 
ducting devices, related to its nonequilibrium and inhomogeneity, leads to the necessity of 
using mathematical simulation methods to study these processes. The quasiballistic model 
is used for a relatively dilute EHP. In this case the methodology based on simultaneous appli- 
cation of macroparticle and Monte Carlo methods is quite effective for numerical solutions 
of the corresponding problems [ii]. This approach is not valid for a dense EHP with fre- 
quent pair collisions. In the situation under consideration the charge carrier distribution 
functions are similar to the Fermi (Maxwell) functions, and one can transform from the kinetic 
equations to the quasihydrodynamic EHP model [i]. 

Computer numerical simulation of processes on the basis of using quasihydrodynamic equa- 
tions was carried out, for example, in [12, 13]. In these studies, however, was assumed con- 
stancy of the coefficients of diffusion, heat conduction , etc., i.e., constancy of the coef- 
ficients in terms with second spatial derivatives. For a real EHP this restriction can be 
substantial, because a strong nonlinearity is possible of the gradient terms, substantially 
complicating the mathematical treatment of the problem. 

The present study is devoted to developing algorithms of numerical solution of the sys- 
tem of quasihydrodynamic equations for a dense "hot" EHP with account of nonlinearity of dif- 
fusion and heat conduction. 

For definiteness we consider a binary p-i-n heterostructure with wideband p- and n- 
region junctions and a narrow-band i-region (Fig. i). We confine ourselves to treating a 
quite dense, but nondegenerate EHP with equal electron and hole effective masses, for Which 
the characteristic time of pair collisions T satisfies the condition 
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Fig. i. Schematic representation of 
the geometry of the structure under 
consideration. 

�9 p << ~<< %, ( l )  
where Xp and ~e are the relaxation times of momentum and energy due to interactions with im- 
purities and phonons. Besides, it is assumed that the EHP in the active i-region is quasineu- 
tral, which imposes the following condition: 

; ts << ix, tz. (2) 

For heterostructures based on PbxSnx-xTe at charge carrier energies corresponding to temperature 
- 100 K it can be assumed that the conditions adopted are satisfied if the concentrations 
are N - 1014-1016 cm "3 and s s > 10-s'10-~ cm. 

In the situation considered the EHP is characterized by a charge carrier concentration 
N and their effective temperature 0, for which the following system of equations, derived, 
for example, in [4, 5], is valid in the two-dimensional geometry: 

_ a 2 

aN 02 [D (N, 6)) NI H- [D (N, O) N] + R (N, O), (3) 
d'~ O X ~" ~ - ' ~  

O'r, = --OX • (N, O) ~ q- lq (N, O) [D (N, 0) NI + 

(9 { 06) 0 [D(N, @)N/} + P(N,  (9). + -~- ), (N, 0 ) - ~  + n(/v, o) ~ (4) 

When electron-hole scattering weakly affects the momentum relaxation, the following relation 
is valid D(O) = Ds163 1+a, ~(N, 0) = (5/2 + ~)ND(8), where ~ is a numerical coefficient, 
determined by the energy dependence of the momentum relaxation time, E(N, 0) = 3/2N8 is the 
EHP energy density (the nondegenerate case), and H(8) = (5/2 + a)8 is the energy transported 
by a singl e electtron (hole) into the flow. The shape of the terms R(N, O) and P(N, 8) is 
determined by the dominant mechanisms of electron and hole recombination and their energy 
relaxation. We further put: 

• V l  -- IV 

R(N, 0 ) - - - - ,  
-~(0) (5) 

P ( N ,  O) = N(Ot--  O) (6) 

Here Xr(O) = Xr(8 /8s  r ,  [ e ( 8 )  = xe (8 /8 s  e,  where r and e a re  numbers whose v a l u e s  are  d e t e r -  
mined by t he  c o r r e s p o n d i n g  mechanisms.  

Taking the active region to be rectangular (Fig. I), the boundary conditions to Eqs. (3), 
(4) are assigned in the form 

---L-~ O)NII = •  (7) 
OZ Iz=-T, t z 
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--{• O) ao 4-I-I(N, O) 0 }[ OZ: " --~--.-[D(N, O)N] = +_A..], 
z=~:~ (8) 

0 [D(N, 0)N][ =0, (9) OX Ix=~l~ 

{ ~0 0 O) Nli{ =0. • O)--~-X-- + FI(N, @)-~-- [D(N, (10) 
I X = ~ I  x 

Conditions (7)-(10) correspond to injection of "hot" carriers of junctions of size 2ax, lo- 
cated at the planes Z = ~s here J = J(~, X) = J(T)x(a2x - X 2) is the current density in- 
jected through electron and hole heterojunctions, where A is the energy of injected carriers, 
determined, in particular, by the jump values of the bottom of the conduction band and the top 
of the valence and in the heterojunction. 

As initial conditions we take 

N(X,  Z)l,=o :=No---- const, O(X, Z)[~=o ----- Oo----const. (11) 

We introduce the following dimensionless quantities: 

N (9 X Z lx a~ 
: n ,  - - : = T ,  . . . .  X, ~ : Z ,  - - : 1 ,  - - -  : a ,  

�9 Dl i z, Dz ~:,Dt ] (z, X) lz A 
l~ = t, 2 - "% l~ - -  % ,  : I (t, x), - -  = &  

12 z NiDl Ol 

(12) 

In these variables the system (3)-(i0), with account of the specific representation of the 
coefficients appearing in it, is 

On 02 0 ~ 1-- n 
[nT a+=] [nT I+~] = , 

Ol Ox ~ Oz ~ ~, ( T) 

2 at ~ + ~ [nT2+=l ~- [n r ~+=[ : n (I-- T) 
' Oz 2 1% (T) ' 

(13 )  

(14 )  

- -  a [ n T ' + ~ ' ]  [ = + I (t, x), (ZS) 

- - ( + - F  ~z)~?[nT2+~] L = ~ , _  _ .--.: ~6/(t, x), (16) 

Ox [nTl+~] =0, (17) 
x =  ~ l  

OX Ix= :v l 
The system of equations considered (13), (14) is substantially nonlinear. Indeed, along with 
the strong nonlinearity of the EHP diffusion and heat conduction coefficients, as well as 
the right-hand sides of Eqs. (13), (14), the variables n and T in the system are coupled 
through the gradient terms, the right-hand sides, while in Eq. (14) -also through the time 
derivative. All this implies great difficulty on the numerical solution of the problem de- 
scribed even in the spatially one-dimensional case. 

It must be noted that the systems of equations (3), (4), or (13), (14), resemble in some 
sense the nonlinear system 

ox _ DII 1 
at t Ox2~ + ~ ,  + F~ (X, Y, D,  ( 1 9 )  

{ o,v I OY : D~ + + f2(X,  Y, ~,), (20)  
. . . . .  at- a--Y-, j 

being a classical object of studying dissipative structures [14, 15]; in particular, morpho- 
genesis. The solution of the system of equations (13), (14) also leads to the manifestation 
of EHP stratification (dissipative structures) [16], as will be shown in the following inves- 
tigation by the present authors, devoted to results and analysis of the numerical calculations. 
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Ot 
where 

However, the system under consideration (13), (14) is more complicated, and consequently 
so is the numerical solution, than the system (19), (20), since the variables in it are coupled 
not only nonlinearly through the functions F I and F2, but they are also at the same time the 
object of applying the differentation operators. 

One can rewrite the equations of the system (13), (14) in a form providing a smoother 
representation of the complicated numerical realization of the given problem. For this we 
introduce, along with the variables n and T, the new unknown quantities r = nT I+~, ~ = nT 2+=. 
Following some transformations, Eqs. (13) and (14) can then be rewritten in the form: 

P(~, '~); 

T 

while  R(r ~) and P(r ~g) are  de te rmined  from (5) and (6) .  

As seen from the  r i g h t - h a n d  s i d e  of  Eq. (21) ,  the  system c o n t a i n s  terms wi th  n e g a t i v e  
d i f f u s i o n ,  which can i m p o r t a n t l y  a f f e c t  the  n a t u r e  of  the  behavior  o f  s o l u t i o n s  of  t he  problem 
( 3 ) - ( 1 1 ) .  By the  s t r u c t u r e  of  the  e q u a t i o n s  i t  f o l l ows  t h a t  in some cases  t he  inhomogene i t i e s  
may not  ge t  smoothed, but ,  on the  c o n t r a r y ,  be enhanced.  This f a c t  f i n a l l y  imposes the  r e q u i r e -  
ment of  c a r e f u l  choice  of  the  a l g o r i t h m  of  numer ica l  s o l u t i o n  of  the  problem. 

i. Numerical Solution Al~orithm of the. One-dimensional Problem. We consider initially a 
spatially homogeneous model, in which one studies the distributions of EHP concentration N and 
the effective temperature O in a direction perpendicular to that of electron and hole injec- 
tion (parallel to the plane of heterostructure layers). Before turning to its description it 
must be pointed out that the solution of one-dimensional problems is an important stage in 
the numerical simulation of high dimensionality problems. The study of one-dimensional models 
with less cost makes it possible to clarify the difficulties in the nuemrical solution, char- 
acteristic of the given problem as a whole, as well as the solution features, manifested both 
in the one-dimensional and in the multidimensional cases. 

Thus, we investigate structures with a width of active i-region s small in comparison 
with the diffusion length s = (Ds and the carrier cooling length s = ((5/2 + ~)Ds 
TE) I/=. In this case, assuming s ax >> s integration of the original two-dimensional equa- 
tions (3) and (4) over dz with account of the boundary conditions (7), (8) leads to the fol- 
lowing spatially one-dimensional equations: 

aN O ~ O, ---~ax~ [D(O) Ni+ R(N, 0 )+  21,2J , (23) 

3 0 ( N O )  0 { O0 0-~ " } - -  0"--'-7- =~ oX • 0),-~-+1-I(0) [D(O)NI +P(N, 0)+ 2JA (24) 2& 

with the boundary and initial conditions 

O0 I =0, 
---~-b [D (O)N] x=;tx=O' • O) ~x=;txf 
OX 

N (X)],=o= No+ 6No, O (X)l~=o= Oo+ 60o, 

(25) 

(26) 

where the quantities 6N 0 and 600 are perturbations of the initial homogeneous distributions 
of concentration N o and temperature 00. 

On the segment I--i, Z] we introduce the uniform grid mh = {xi = (i - 1)h; i = I, ..., N; 
h = 2s - i)}, and in the variable t - the grid ~ = {t k = kT, k = 0, i, ...}. For a dif- 
ference approximation of system (23)-(26) we use a purely implicit conservative difference 
scheme, which in the dimensionless variables (12) is 
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fi - -1  
nt:= [O(7") hi;- Tr (~,) 6-21, 

3 ( 5  ) n (7 '--1)  
--~-(nT)t = --~-~-~ [D(7') ~,7' 1~-; %(~) i 261, (27)  

[D(T) n J~,t =0 ,  ~[D('F) n lEtr Tx, ,=0 ,  :F77N==0. 

The standard notation of [17] has been used here. 

The implicit difference scheme (27) is a system of nonlinear difference equations with 
strongly coupled variables. It must be noted that the use of separation algorithms to solve 
the equations of system (27) does not lead to success. Such an algorithm consists of two 
iterative processes: an "external" process in the nonlinearity (for example, an iterative 
Newton method), and an "internal" process, similar to Seidel's method, in which both linear- 
ized equations are solved separately under the assumption that the information on the other 
function is included in the preceding iteration. As shown by the calculations, in this case 
the "internal" iteration converges only for a sufficiently short step in time: ~ S Zmax - h2/ 
max D(T). 
mh 

We apply the Newton iteration method [18] to the system of nonlinear equations (27), 
leading to a system of linear equations in ~n(s+~) = n(S+-) - n(S), ~T(s+~) = T(s+~) - T(s) 
(here s is the iteration number) on a three-point scheme for the internal grid sites. This 
system is solved at each iteration by Newton's method [18]. 

2. Numerical Solution Algorithm of Two-Dimensional Models. In the solution region of 
problem (13)2(18) G = {-s ~ x ~ ~, -i ~ z ~ i} we introduce the uniform grid ~h = {xi = (i - 
l)hx, 1 ~ i ~ N, h x = 2s - i); zj = (j - l)hz; 1 ~ j ~ M, h z = 2/(M - i)}. The grid in 
the variable t is defined in the usual manner: fl~ = {t k = k~, k = 0, I, 2, ...} [17]. As a 
difference approximation of problem (13)-(18) on the grid ~ - flh • ~r we use a purely implicit 
difference scheme, similar to (27). This scheme is also nonlinear. If for its solution we 
use an algorithm based on separating the equations of the system, then along with weak con- 
vergence of iterations for each of them it is necessary to solve two five-point difference 
equations for 6n(s+z) and 6T(s+~). Each of these equations is also solved by iterations. As 
shown by the review [19], for two-dimensional problems this method is practically nonreason- 
able on contemporary computers. By the considerations provided above it is suggested to use 
for numerical solution of the problem described a method in which the system of difference 
relations is treated as one matrix equation in the vector (n, T). We turn now to describing 
this algorithm. The difference scheme for the system (13)-(18) is represented in the form: 

^ 
f i j  # )  _ n .  - n ,  ] 

s fD ( ? . _ . )  - -  2D ,-7 j + 

^ 1 ^ 

T~ (f'~A - -  O, 

^ ^ [2 i (u, T)== ___--3 ~ijTij-- nijT~; + (5/2 + o 0 [D ('~'i-'1.~) ni+ljTi+i;--  
2 .~ h~ 

- -  2D (7~u) n,fl~u + D (r ni_,ii>~_aj] ? (5/2 + g) . ^ h2 [D (7"~J+1) nij+l Ti;+1 - -  

- - 2 D  (fis) n,~T~j -i- D (Tu-J) n,j_, 7"~s-~t---nis (f~s ..... 1)/% (7",~) = 0, 

[~'~ = [D (7"~2) n~2 - -  D (73.) ~zaj/h~+ I ,= O, 

fi i  =: [D ( ' T 2 J )  n 2 J -  D (Tlj) nlj]~hx =z  0 ,  

i.~,; =: [D (]'N--11) nN--~j - -  D ('~"~W) nNfl/h:~ = O, 

(28) 
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ft.,. = = o, = f N / =  o 

We further apply the Newton iteration method to the system of nonlinear equations (28), 
to the system of linear equations 

~_.~ { Of'~s)_- 6n(Q)S+~ + ~Oft'~s) 6T(Q)(s+~)} + f~(P) (~ = O, 
Qem~,~ an(q)  aT (q) 

l ead ing  

(29) 

where k = i, 2 is the number of equation of system (28), P is the point of the grid flh and 
Ill(p) is the pattern of grid equations (28) at site P (including five points of the "cross" if 
P is internal, and two points - if P is a boundary site of the grid). In the system (29) s is 
the number of Newton iteration. From (29) we find at each iteration the increments 6n(S+~) 
and 6T(s+~), then from the equations n(S+l) = n(s) + 6n(S+~), T(s+I) = T(s) + 6T(s+l) we deter- 
mine the values of the required functions at iteration s + i. The criterion of concluding 
the iteration process described can be, for example, the condition ~6n(S+l)~ < e~,n(s)[[ + e=, 

N - - I  , ~ ' 1  

where the grid norm is defined as I[y]I = (X X Y~i hxhz / /2  As the initial approximation T(~ 
i = 1  i=]~ 

and n(~ we take the values of the effective EHP temperature and concentration at the preced- 
ing time layer. 

To solve the system of five-point equations (29) we used a matrix method [20], being 
a generalization to the case of second-order matrices of the "=- 6" iteration process [21, 
22]. We write down this algorithm. For this purpose we represent the system (29) in the 
form 

A~Ui_~ - -Ci~U~ + BijUi+lj + AijUij-1 - -BiiUij+, + Fi~ = O, 
(30) 

- -  CiIU~I + BaUi= = -- Fi,, -- CI~U,~ + B~iU2~ := -- F~, 

- -  A ~  U ~ _ ,  + Cm U~M = FiM, - -  ANIUN--li + CNi UNi = FNi. (31) 

Here Uij = (6nij(s+~), 6Tij (s+~)) is the xecto[ of unknown functions, Fij 
the right-hand sides, and Aij, Cij, 
example: 

af: " 
an~ -,s 

an ~_ L~ 

Bij, Aij, 

af /" 
aT~_~ 

is the vector of 
Bij are second-order matrices, where, for 

or#" 
Ont+l~ 

Oni+li 

OTi+~ 

OT~+I~ 

conditions (31) in a form simul- We seek a solution of the matrix equation (30) with boundary 
taneously satisfying the conditions: 

Uij = ~zi+u'U~+ij -}7 ~i+lJ, UiJ == Yi-li"Ui-li + di-lJ' (32) 

Uij ~ij+i"Ui,+lT ~iJ+l, Uij ?lj_l"U~j-x ~- dij-~, (33) 

where ~, y,  ~, X a r e  m a t r i c e s  of  s i z e  2 • 2, and 6, d, 6, d a r e  two-d imens iona l  v e c t o r s .  Sub- 
s t i t u t i n g  (32) i n to  (30) and us ing  m a t r i x  m a n i p u l a t i o n s ,  we o b t a i n  n o n l i n e a r  equa t ions  f o r  
the determination of a, 6, Y, d: 

r = ~-'ii~.B~j, cz,j --- CT] I .BIj, ~g~j~ ---: Cij-- Atj.cz~-- Aij.=ij -- Bij.u 

i----2, 3, . .  , N - - l ; ] = 2  . . . . .  M - - l ;  

~i+xJ = W~q~. (F~i + Aij'~is + Aij'f~ij + B~j'di~), [~lJ =: C ~  1 .F~.j, (3/4) 

1 I 
%'~-~s = W-~iv" A~J, "~N--~ i = C-~N i" A m  ' 

--I 
di-l] -" ~ iv"  (Fi] + B~ 'd~  + A i ~ . ~  + B,l.di~), dN_li = C-~J.FNi. 
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Similarly. substituting (33) into (3) and applying matrix equations, we obtain equations for 

~, 8, ~, d: 
m~y+~ = V ~ . B ~ j ,  m-a = C7i' "Bi~, ] = 2 . . . . .  M - -  I; i - -  2 . . . . .  N - - l ; ,  

~4z~ =: Ciy -- Ai i .a i7  -- Ai } .~ i j  - -  BiJ'~YiJ, 

- ~ F - L  , ~*~ = ii= .(F~j : Au .[3~ + Au.13~j + B~j.d~), 13. --- CTi ~ "Fa, 
(35 )  

- -  Aii .o~ij - -  Bij  .'?~, 

tz~_~- == ~F-~u..~ "(Fi~ -i- Bi~.di~ + A~.~iy  ~, B ~ . d ~ ) ,  ~M-~  -- C.-(z~ . F ~ .  

The system for finding the coefficients (34)-(35) is nonlinear, and is solved by iterations~ 
while to find ~, y, m, y one can confine oneself to an autonomous iteration process, not 
related to the calculation of 8, d, 8, d. The solution of the matrix equation (30) can then 
be found from one of Eqs. (32), (33) with account of boundary conditions (31). 

To realizethe described computational algorithms in the two-dimensional and one-dimen- 
sional statements we prepared a FORTRAN program, by means of which we solved the correspond- 
ing systems of equations. 

In conclusion, it is desirable to stress once more the large computational difficulties 
arising in numerical simulation of processes in an electron-hole plasma. The algorithms con- 
sidered, particularly concerning the spatially two-dimensional case, are still far from com- 
pletion. Their further development and study are of interest not only from the point of 
view of obtaining specific applied results in the region under consideration, but also from 
the point of view of creating effective methods of computing systems of nonlinear equations 
of the diffusion type. 

NOTATION 

T, characteristic time of pair collisions; ~p, momentum relaxation time; ~e, energy re- 
laxation time; ~s, Debye screening length; ~x and ~z, characteristic sizes of the active ge- 
gion; N and n, charge carrier concentrations; @ and T, effective temperatures; D(N, @), dif- 
fusion coefficient; • (N, @), EHP thermal conductivity coefficient; E(N, @), EHP energy density; 
H(N, @), energy transferred by a single electron (hole) to the flow; @~, lattice temperature; 
D~, diffusion coefficient at @ = @~; R(N, @), recombination term; P(N, @), relaxation term; 
�9 r(@), ~s(@), carrier lifetime and relaxation time; N~, EHP concentration in the absence of 
injection through the heterotransitions; a x and a, sizes of injection contacts; J and I, in- 
jection current densities; A, 6, energies of injected carriers; X(x), Heaviside function; ~D, 
diffusion length; hE, cooling length; and X, x, Z, z, space coordinates. 
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DESCRIPTION OF THE NEIGHBORHOOD OF THE PHASE EQUILIBRIUM LINE 

AND METASTABLE REGION WITH THE PARAMETERIC EQUATION OF SCALING 

THEORY 

V. F. Lysenkov and A. V. Shustrov UDC 536.7 

The deficiencies of the parameteric equation of scaling theory in the neighborhood 
of the phase equilibrium line and in the metastable region are analyzed. 

The equation of state obtained in the well-known parametric representation of the scaling 
theory [i, 2] is widely used in calculations in the critical region. The first approxima- 
tion of this representation, the so-called linear model, is themost widely studied. In this 
model the pressure and heat capacity at constant volume are calculated as follows [i, 2]: 

Ap=(1  +Ap)A~(p, T ) -  lAp! ~+~a(x)-A(T) ,  (1) 

pC~ M~< i_~/~ T -- T---~- [IAp f (x) - -  ~" (p~, T) Ap + B (T)], (2) 

: r ( 1 -  b~O~), Ap :kr~O,  A~= I AplSh(x). (3) 

Here we use the conventional notation in scaling theory. The scaling functions in (i) through 
(3) are determined in terms of the parameter 8: 

h ( x )  ~ aO(1 - -  0D(kl01)-6, f ~ )  = ak~(V - -  l) (kl01)=/~. (4 )  
2~b 2 

In o rder  to proceed  f u r t h e r  one must r e l a t e  the  s c a l i n g  v a r i a b l e  x = ~/[Ap[1/~ wi th  0 and 
also with expression for the scaling function of the isothermal compressibility fz = [~h(x) - 
8-1xh'(x)] -I. From (3) one easily obtains 

x = (I -- b~o ~) (k lOl) -~/~ , (5 )  

L (x) = k (k I Ol) ~-' [1 + 2 (p % ~ ) - - 3  03]-~ 
a 1 - - 2 p  " (6) 
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